La direfencia con Fermat es que no obligaremos a que f sea un número natural. En su lugar buscaremos números f reales.
The difference with Fermat is that we will not force "f" was a natural number. Instead look real numbers for "f".
Conjuntos de tres / Sets of three elements
Lo primero es buscar el orden en las ternas {a, b, c}. La forma más fácil ser buscar los conjuntos que cumplan que la suma de sus elementos sean un número determinado y que c>a || b>a.
The first is to find order in the triples {a, b, c}. The easiest way to find the sets be satisfying than the sum of its elements are a certain number and c> a || b> a.
C(3) = {Ø}, 0 elementos.
C(4) = {( 1 1 2)} 1 elementos.
C(5) = {( 1 1 3), ( 1 2 2)} 2 elementos.
C(6) = {( 1 1 4), ( 1 2 3), ( 2 2 2)} 3 elementos.
C(7) = {( 1 1 5), ( 1 2 4), ( 1 3 3), ( 2 2 3)}
C(8) = {( 1 1 6), ( 1 2 5), ( 1 3 4), ( 2 2 4), ( 2 3 3)}
...
C(20) = {( 1 1 18), ( 1 2 17), ( 1 3 16), ( 1 4 15), ( 1 5 14), ( 1 6 13), ( 1 7 12), ( 1 8 11), ( 1 9 10), ( 2 2 16), ( 2 3 15), ( 2 4 14), ( 2 5 13), ( 2 6 12), ( 2 7 11), ( 2 8 10), ( 2 9 9), ( 3 3 14), ( 3 4 13), ( 3 5 12), ( 3 6 11), ( 3 7 10), ( 3 8 9), ( 4 4 12), ( 4 5 11), ( 4 6 10), ( 4 7 9), ( 4 8 8), ( 5 5 10), ( 5 6 9), ( 5 7 8), ( 6 6 8), ( 6 7 7)} 33 elementos.
Por si alguno tiene curiosidad el número de elementos de cada conjunto es:
In case anyone was curious, the number of elements in each set is:
( 2 0), ( 3 0), ( 4 1), ( 5 1), ( 6 2), ( 7 3), ( 8 4), ( 9 5), ( 10 7), ( 11 8), ( 12 10), ( 13 12), ( 14 14), ( 15 16), ( 16 19), ( 17 21), ( 18 24), ( 19 27), ( 20 30), ( 21 33), ( 22 37), ( 23 40), ( 24 44), ( 25 48), ( 26 52), ( 27 56), ( 28 61), ( 29 65), ( 30 70), ( 31 75), ( 32 80), ( 33 85), ( 34 91), ( 35 96), ( 36 102), ( 37 108), ( 38 114), ( 39 120), ( 40 127), ( 41 133), ( 42 140), ( 43 147), ( 44 154), ( 45 161), ( 46 169), ( 47 176), ( 48 184), ( 49 192), ( 50 200), ( 51 208), ( 52 217), ( 53 225), ( 54 234), ( 55 243), ( 56 252), ( 57 261), ( 58 271), ( 59 280), ( 60 290), ( 61 300), ( 62 310), ( 63 320), ( 64 331), ( 65 341), ( 66 352), ( 67 363), ( 68 374), ( 69 385), ( 70 397), ( 71 408), ( 72 420), ( 73 432), ( 74 444), ( 75 456), ( 76 469), ( 77 481), ( 78 494), ( 79 507), ( 80 520), ( 81 533), ( 82 547), ( 83 560), ( 84 574), ( 85 588), ( 86 602), ( 87 616), ( 88 631), ( 89 645), ( 90 660), ( 91 675), ( 92 690), ( 93 705), ( 94 721), ( 95 736), ( 96 752), ( 97 768), ( 98 784), ( 99 800), ( 100 817), ( 101 833),
Satisface la ecuación: y = 0,0833x2 - 0,1663x - 0,0207
Pero esto nos despista de nuestro objetivo
La idea / The idea
Una vez ordenados los conjuntos C(n) buscar los f de cada elemento del conjunto y ver que pinta tienen.Para cumplir este objetivo lo primero que hay que hacer es programar una función para calcular f conociendo a, b y c.
Once ordered sets C (n), we have to find the f of each element of the set and see how they are. To meet this objective the first thing to do is to make an function to calculate b and c knowing f.
Function CalculaFa(ByVal a As Integer,
ByVal b As Integer,
ByVal c As Integer) As Double
g = 0:p = 0.1:i1 = Sgn(a ^ g + b ^ g - c ^ g)
100:
Do
i0 = i1: g = g + p
h1 = a ^ g + b ^ g - c ^ g
i1 = Sgn(h1)
Loop Until i0 <> i1
p = -p / 10
If Abs(p) > 0.0000001 Then GoTo 100
CalculaFa = g
End Function
Resultado numérico: / Numerical results:
C(5):
(1 1 3)→0,630930 (1 2 2)→Inf. C(6): (1 1 4)→0,500000 (1 2 3)→1,000000 (2 2 2)→Inf. C(7): (1 1 5)→0,430677 (1 2 4)→0,694242 (1 3 3)→Inf. (2 2 3)→1,709511 C(8): (1 1 6)→0,386853 (1 2 5)→0,563896 (1 3 4)→1,000000 (2 2 4)→1,000000 (2 3 3)→Inf. C(9): (1 1 7)→0,356207 (1 2 6)→0,489536 (1 3 5)→0,727160 (1 4 4)→Inf. (2 2 5)→0,756471 (2 3 4)→1,507127 (3 3 3)→Inf. C(10): (1 1 8)→0,333333 (1 2 7)→0,440660 (1 3 6)→0,600967 (1 4 5)→1,000000 (2 2 6)→0,630930 (2 3 5)→1,000000 (2 4 4)→Inf. (3 3 4)→2,409421 C(11): (1 1 9)→0,315465 (1 2 8)→0,405685 (1 3 7)→0,525764 (1 4 6)→0,748222 (1 5 5)→Inf. (2 2 7)→0,553295 (2 3 6)→0,787885 (2 4 5)→1,421586 (3 3 5)→1,356916 (3 4 4)→Inf. | C(12):
(1 1 10)→0,301030 (1 2 9)→0,379195 (1 3 8)→0,474995 (1 4 7)→0,626250 (1 5 6)→1,000000 (2 2 8)→0,500000 (2 3 7)→0,668850 (2 4 6)→1,000000 (2 5 5)→Inf. (3 3 6)→1,000000 (3 4 5)→2,000000 (4 4 4)→Inf. C(13): (1 1 11)→0,289065 (1 2 10)→0,358299 (1 3 9)→0,438018 (1 4 8)→0,551463 (1 5 7)→0,763203 (1 6 6)→Inf. (2 2 9)→0,460846 (2 3 8)→0,591710 (2 4 7)→0,807572 (2 5 6)→1,372508 (3 3 7)→0,818068 (3 4 6)→1,293174 (3 5 5)→Inf. (4 4 5)→3,106284 C(14): (1 1 12)→0,278943 (1 2 11)→0,341305 (1 3 10)→0,409664 (1 4 9)→0,500000 (1 5 8)→0,645009 (1 6 7)→1,000000 (2 2 10)→0,430677 (2 3 9)→0,537187 (2 4 8)→0,694242 (2 5 7)→1,000000 (2 6 6)→Inf. (3 3 8)→0,706695 (3 4 7)→1,000000 (3 5 6)→1,822550 (4 4 6)→1,709511 (4 5 5)→Inf. | C(15):
(1 1 13)→0,270238 (1 2 12)→0,327153 (1 3 11)→0,387098 (1 4 10)→0,462006 (1 5 9)→0,571072 (1 6 8)→0,774576 (1 7 7)→Inf. (2 2 11)→0,406598 (2 3 10)→0,496338 (2 4 9)→0,618529 (2 5 8)→0,821352 (2 6 7)→1,339977 (3 3 9)→0,630930 (3 4 8)→0,836778 (3 5 7)→1,256656 (3 6 6)→Inf. (4 4 7)→1,238613 (4 5 6)→2,487939 (5 5 5)→Inf. C(16): (1 1 14)→0,262650 (1 2 13)→0,315140 (1 3 12)→0,368624 (1 4 11)→0,432581 (1 5 10)→0,519463 (1 6 9)→0,659684 (1 7 8)→1,000000 (2 2 12)→0,386853 (2 3 11)→0,464425 (2 4 10)→0,563896 (2 5 9)→0,712809 (2 6 8)→1,000000 (2 7 7)→Inf. (3 3 10)→0,575717 (3 4 9)→0,731774 (3 5 8)→1,000000 (3 6 7)→1,719845 (4 4 8)→1,000000 (4 5 7)→1,581624 (4 6 6)→Inf. (5 5 6)→3,801784 | C(17):
(1 1 15)→0,255958 (1 2 14)→0,304786 (1 3 13)→0,353161 (1 4 12)→0,408985 (1 5 11)→0,480955 (1 6 10)→0,586741 (1 7 9)→0,783603 (1 8 8)→Inf. (2 2 13)→0,370310 (2 3 12)→0,438694 (2 4 11)→0,522352 (2 5 10)→0,638731 (2 6 9)→0,831677 (2 7 8)→1,316498 (3 3 11)→0,533484 (3 4 10)→0,658051 (3 5 9)→0,849761 (3 6 8)→1,232521 (3 7 7)→Inf. (4 4 9)→0,854756 (4 5 8)→1,207399 (4 6 7)→2,215951 (5 5 7)→2,060043 (5 6 6)→Inf. C(18): (1 1 16)→0,250000 (1 2 15)→0,295743 (1 3 14)→0,339986 (1 4 13)→0,389554 (1 5 12)→0,450889 (1 6 11)→0,535259 (1 7 10)→0,671597 (1 8 9)→1,000000 (2 2 14)→0,356207 (2 3 13)→0,417433 (2 4 12)→0,489536 (2 5 11)→0,584449 (2 6 10)→0,727160 (2 7 9)→1,000000 (2 8 8)→Inf. (3 3 12)→0,500000 (3 4 11)→0,603151 (3 5 10)→0,749960 (3 6 9)→1,000000 (3 7 8)→1,651588 (4 4 10)→0,756471 (4 5 9)→1,000000 (4 6 8)→1,507127 (4 7 7)→Inf. (5 5 8)→1,474770 (5 6 7)→2,973549 (6 6 6)→Inf. | C(19) (1 1 17)→0,244651 (1 2 16)→0,287761 (1 3 15)→0,328594 (1 4 14)→0,373214 (1 5 13)→0,426624 (1 6 12)→0,496517 (1 7 11)→0,599669 (1 8 10)→0,791002 (1 9 9)→Inf. (2 2 15)→0,344010 (2 3 14)→0,399514 (2 4 13)→0,462854 (2 5 12)→0,542693 (2 6 11)→0,654699 (2 7 10)→0,839780 (2 8 9)→1,298569 (3 3 13)→0,472707 (3 4 12)→0,560499 (3 5 11)→0,678323 (3 6 10)→0,859418 (3 7 9)→1,215158 (3 8 8)→Inf. (4 4 11)→0,685198 (4 5 10)→0,867160 (4 6 9)→1,186814 (4 7 8)→2,057504 (5 5 9)→1,179250 (5 6 8)→1,867720 (5 7 7)→Inf. (6 6 7)→4,496556 | C(20):
(1 1 18)→0,239813 (1 2 17)→0,280648 (1 3 16)→0,318622 (1 4 15)→0,359240 (1 5 14)→0,406541 (1 6 13)→0,466065 (1 7 12)→0,548456 (1 8 11)→0,681533 (1 9 10)→1,000000 (2 2 16)→0,333333 (2 3 15)→0,384168 (2 4 14)→0,440660 (2 5 13)→0,509415 (2 6 12)→0,600967 (2 7 11)→0,738690 (2 8 10)→1,000000 (2 9 9)→Inf. (3 3 14)→0,449966 (3 4 13)→0,526285 (3 5 12)→0,624114 (3 6 11)→0,763919 (3 7 10)→1,000000 (3 8 9)→1,602326 (4 4 12)→0,630930 (4 5 11)→0,774279 (4 6 10)→1,000000 (4 7 9)→1,457470 (4 8 8)→Inf. (5 5 10)→1,000000 (5 6 9)→1,412357 (5 7 8)→2,605651 (6 6 8)→2,409421 (6 7 7)→Inf. ... | C(25): (1 1 23)→0,221065 (1 2 22)→0,253971 (1 3 21)→0,282600 (1 4 20)→0,311047 (1 5 19)→0,341358 (1 6 18)→0,375361 (1 7 17)→0,415359 (1 8 16)→0,464959 (1 9 15)→0,530840 (1 10 14)→0,628226 (1 11 13)→0,807162 (1 12 12)→Inf. (2 2 21)→0,294784 (2 3 20)→0,331166 (2 4 19)→0,368173 (2 5 18)→0,408588 (2 6 17)→0,455182 (2 7 16)→0,511801 (2 8 15)→0,584974 (2 9 14)→0,688046 (2 10 13)→0,856493 (2 11 12)→1,262874 (3 3 19)→0,375521 (3 4 18)→0,421736 (3 5 17)→0,473532 (3 6 16)→0,535062 (3 7 15)→0,612636 (3 8 14)→0,717976 (3 9 13)→0,878073 (3 10 12)→1,182930 (3 11 11)→Inf. (4 4 17)→0,479051 (4 5 16)→0,545214 (4 6 15)→0,626613 (4 7 14)→0,733936 (4 8 13)→0,889217 (4 9 12)→1,151962 (4 10 11)→1,817457 (5 5 15)→0,630930 (5 6 14)→0,741031 (5 7 13)→0,894776 (5 8 12)→1,137374 (5 9 11)→1,623440 (5 10 10)→Inf. (6 6 13)→0,896477 (6 7 12)→1,131270 (6 8 11)→1,552882 (6 9 10)→2,720194 (7 7 11)→1,533562 (7 8 10)→2,436346 (7 9 9)→Inf. (8 8 9)→5,884949 |
Resultado gráfico: / Graphic results:
Cada banda vertical es un número f, azul para C(1) y rojo para C(255) según arco iris
Each vertical strip is a number f, blue for C (1) and red for C (255) according rainbow scale.
Ídem, pero en lugar de formar una banda vertical, forma un punto y en ordenadas el valor de x de C(x).
Idem, but instead of forming a vertical band, it forms a neat point and the value of x in C (x).
Salvo ante valores de 0, 1 y 2 parece que los némeros "f" rehuyeran los demás números enteros, y quebrados y similares. Se puede concluir que: "x Î R, $ fÎ[x-e,x+e]Î R & a,b,c Î N | af+bf=cf .
Es decir, dado un número real, x, siempre existe un número real en el intervalo
[x-e,x+e] que satisface la ecuación af+bf=cf
con valores enteros de a,b y c.
Pongamos un ejemplo. Sea x=3, vamos a ver cómo podemos aproximarnos:
C(10); (3 3 4); f = 2,409421; e = 0,590579
C(13); (4 4 5); f = 3,106284; e = 0,106283
C(18); (5 6 7); f = 2,973549; e = 2,645111·10-02
C(23); (6 8 9); f = 2,993245; e = 6,755113·10-03
C(31); (9 10 12); f = 3,002552; e = 2,552032·10-03
C(82); (15 33 34); f = 3,002088; e = 2,088069·10-03
C(98); (17 40 41); f = 2,998646; e = 1,353979·10-03
C(113); (23 44 46); f = 3,001228; e = 1,228094·10-03
C(119); (36 37 46); f = 2,998798; e = 1,202106·10-03
C(120); (24 47 49); f = 2,999859; e = 1,409053·10-04
C(166); (43 58 65); f = 2,999891; e = 1,089572·10-04
C(216); (41 86 89); f = 3,000106; e = 1,060962·10-04
C(261); (64 94 103); f = 3,000005; e = 5,006790·10-06
C(353); (71 138 144); f = 2,999997; e = 3,099441·10-06
C(445); (135 138 172); f = 2,999999; e = 9,536743·10-06
La sucesión 10, 23, 28, 23, 31, 82, 98, 113, 119, 120, 166
, 216, 261, 353, 445,... ¿Tiene algún término general?
Para x=4
C(13); (4 4 5); f = 3,106284; e = 0,8937160
C(16); (5 5 6); f = 3,801784; e = 0,1982159
C(24); (7 8 9); f = 3,941391; e = 5,860900·10-02
C(37); (10 13 14); f = 4,026536; e = 2,653598·10-02
C(59); (18 19 22); f = 4,025973; e = 2,597284·10-02
C(67); (16 25 26); f = 3,982761; e = 1,723909·10-02
C(72); (17 27 28); f = 4,005021; e = 5,021095·10-03
C(94); (21 36 37); f = 3,999590; e = 4,100799·10-04
C(118); (37 37 44); f = 4,000348; e = 3,480911·10-04
C(184); (53 62 69); f = 3,999917; e = 8,296966·10-05
C(320); (64 127 129); f = 3,999935; e = 6,508827·10-05
Con e = 0,01 resulta:
C(23); (6 8 9); f = 2,993245
C(31); (9 10 12); f = 3,002552
C(46); (12 16 18); f = 2,993245
C(62); (18 20 24); f = 3,002552
C(69); (18 24 27); f = 2,993245
C(74); (19 26 29); f = 3,009558
C(75); (23 23 29); f = 2,990260
C(80); (23 26 31); f = 2,992867
C(82); (15 33 34); f = 3,002088
C(88); (27 27 34); f = 3,006838
C(91); (22 33 36); f = 2,991530
C(92); (24 32 36); f = 2,993245
[...]
C(171); (44 60 67); f = 3,007065
C(173); (50 56 67); f = 2,997841
[...]
Con e = 0,001 resulta:
C(120); (24 47 49); f = 2,999859
C(146); (31 56 59); f = 3,000988
C(163); (50 50 63); f = 2,999187
C(166); (43 58 65); f = 2,999891
C(179); (26 76 77); f = 3,000766
C(186); (40 71 75); f = 3,000602
[...]
C(319); (88 107 124); f = 2,999737
[...]
Con e = 0,0001 resulta:
C(261); (64 94 103); f = 3,000005
C(318); (94 101 123); f = 3,000042
C(328); (95 106 127); f = 3,000017
C(349);(103 111 135); f = 2,999970
C(353); (71 138 144); f = 2,999997
C(367); (73 144 150); f = 3,000003
C(374); (83 141 150); f = 3,000016
C(378); (54 161 163); f = 2,999991
C(380);(112 121 147); f = 2,999953
C(381); (44 168 169); f = 3,000049
C(400);(107 137 156); f = 2,999975
C(409);(102 146 161); f = 3,000080
C(411);(121 131 159); f = 2,999971
C(429); (59 184 186); f = 3,000089
C(432);(130 135 167); f = 2,999918
C(442);(130 141 171); f = 3,000009
C(445);(135 138 172); f = 2,999999
C(451);(120 155 176); f = 3,000087
De todo esto se puede deducir que si bien el teorema de Fermat se cumple para un matemático, sin embargo, se incumple para un ingeniero (si se admite un pequeño error). :-)
From all this, it can be deduced that although Fermat's theorem is true for a mathematician, however, fails to engineer (if a little error is supported). :-)
C(23); (6 8 9); f = 2,993245
C(31); (9 10 12); f = 3,002552
C(46); (12 16 18); f = 2,993245
C(62); (18 20 24); f = 3,002552
C(69); (18 24 27); f = 2,993245
C(74); (19 26 29); f = 3,009558
C(75); (23 23 29); f = 2,990260
C(80); (23 26 31); f = 2,992867
C(82); (15 33 34); f = 3,002088
C(88); (27 27 34); f = 3,006838
C(91); (22 33 36); f = 2,991530
C(92); (24 32 36); f = 2,993245
[...]
C(171); (44 60 67); f = 3,007065
C(173); (50 56 67); f = 2,997841
[...]
Con e = 0,001 resulta:
C(120); (24 47 49); f = 2,999859
C(146); (31 56 59); f = 3,000988
C(163); (50 50 63); f = 2,999187
C(166); (43 58 65); f = 2,999891
C(179); (26 76 77); f = 3,000766
C(186); (40 71 75); f = 3,000602
[...]
C(319); (88 107 124); f = 2,999737
[...]
Con e = 0,0001 resulta:
C(261); (64 94 103); f = 3,000005
C(318); (94 101 123); f = 3,000042
C(328); (95 106 127); f = 3,000017
C(349);(103 111 135); f = 2,999970
C(353); (71 138 144); f = 2,999997
C(367); (73 144 150); f = 3,000003
C(374); (83 141 150); f = 3,000016
C(378); (54 161 163); f = 2,999991
C(380);(112 121 147); f = 2,999953
C(381); (44 168 169); f = 3,000049
C(400);(107 137 156); f = 2,999975
C(409);(102 146 161); f = 3,000080
C(411);(121 131 159); f = 2,999971
C(429); (59 184 186); f = 3,000089
C(432);(130 135 167); f = 2,999918
C(442);(130 141 171); f = 3,000009
C(445);(135 138 172); f = 2,999999
C(451);(120 155 176); f = 3,000087
[...]
De todo esto se puede deducir que si bien el teorema de Fermat se cumple para un matemático, sin embargo, se incumple para un ingeniero (si se admite un pequeño error). :-)
From all this, it can be deduced that although Fermat's theorem is true for a mathematician, however, fails to engineer (if a little error is supported). :-)
It remains to see what happens when f was part of the complex numbers.
No hay comentarios:
Publicar un comentario