Hace tiempo, al leer las teoría de Cantor y su catalogación de los conjuntos infinitos, me pareció muy curiosa su forma de establecer un orden en el conjunto de números racionales que hacía que su ordinal fuera de igual magnitud que el conjunto de números enteros. El orden que establecía era el siguiente (para el entorno de 0 a 1):
0, 1, 1/2, 1/3, 2/3, 1/4, 3/4, 1/5, 2/5, 3/5, 4/5, 1/6, 5/6, 1/7,...
Como se ve, se van eliminando aquellos quebrados que, por reducción, ya hayan sido considerados.
Un punto que me interesaba especialmente era la contabilización de cuántos de ellos estaban en cada denominador diferente:
0, 1,
1/2,
1/3, 2/3, → 2 elementos
1/4, 3/4, → 2 elementos
1/5, 2/5, 3/5, 4/5, → 4 elementos
1/6, 5/6, → 2 elementos
1/7, 2/7, 3/7, 4/7, 5/7, 6/7 → 6 elementos
etc.
Para cada denominador podríamos crear la siguiente tabla:
Aquí se pueden hacer dos observaciones. La primera es que (salvo para 2) el número de racionales con un denominador cualquiera siempre hay un número de par de quebrados no simplificables. La segunda es obvia, para denominadores primos la ecuación tendería a p + ε.
Aunque no se sepa "a priori" cual es el valor al que tenderá la pendiente no podrá ser mayor a 1 y, aparentemente está en torno a 0,6. Había que realizar un programa para ello ya que a mano ha sido muy tedioso llegar a 32.
Con la siguiente macro en una hoja de cálculo obtendremos hasta 10.000 valores:
Sub Macro4()
For i = 1 To 10000
Range("a" + Trim(i + 2)).Value = i
k = 0
For j = 1 To i - 1
If Application.WorksheetFunction.Gcd(i, j) = 1 Then k = k + 1
Next j
Range("b" + Trim(i + 2)).Value = k
Next i
End Sub
Ya con 10.000 valores se obtiene la siguiente gráfica:
Resulta curioso ver como se va agolpando en varias rectas y el valor de la recta de regresión del conjunto es: y = 0,60764197x - 0,049466365.
Una curiosidad es si 6/π² = 0,607927101854027 ¿No es demasiada casualidad?
La función zeta de Riemann ζ(2) = π²/6. Luego podríamos poner:
La función zeta de Riemann ζ(2) = π²/6. Luego podríamos poner:
y = n / ζ(2) + ε
Si ahora recordamos el paralelismo con la observación de Euler:
Planteo una pregunta sencilla. Si unos pocos valores de ls función zeta y 1/ζ son:
Planteo una pregunta sencilla. Si unos pocos valores de ls función zeta y 1/ζ son:
¿Qué relación hay entre estos y las pendientes parciales que aparecen en el gráfico?